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The self-excited oscillation of a planar jet impinging upon a wedge can give rise to 
not simply a single, but as many as seven well-defined frequency components 
in the range of Reynolds-number (based on nozzle width and mean velocity) 
250 < Re < 1150. All of these components are traceable to the nonlinear distor- 
tion/interaction (i .e. sum and difference) frequencies of two primary components : 
the most stable frequency of the jet shear layer (/I) ; and a low-frequency modulating 
component (@). 

The modulating component $’ arises from vortex-vortex interaction a t  the 
impingement edge. This interaction involves vortices of both like and opposite sense ; 
the vortices of opposite sense to those of the incident shcar layer arise from eruption 
of the viscous layer at the edge and tend to  form counter-rotating vortex pairs with 
the incident vortices. The details of the vortex-vortex interaction pattern vary with 
Reynolds number ; however, the pattern adjusts itself to maintain the modulating 
component +p. Its  upstream influence strongly modulates the sensitive region of the 
shear layer a t  the jet nozzle lip. Consequently, the linear-growth region of the 
disturbance near the lip is dominated by the component $/3, which eventually gives 
way to the most unstable component p further downstream. 

1. Introduction 
It is well known that impingement of a planar jet upon an edge can give rise to 

strongly coherent, self-sustained oscillations (see figure 1 ) . Recent investigations of 
this class of flows, including related cases of mixing-layer and wake-edge interactions, 
are reviewed by Rockwell (1983). The framework established by Powell (1961), in 
which he defines the central features of these oscillations, continues to provide the 
basis for further studies. Figure 1 represents the fundamental characteristics of a 
typical self-sustaining oscillation: amplification of unstable disturbances in the shear 
layer ofthe jet associated with adownstream-travelling instability wave ; impingement 
of the amplified disturbance (i.e. vorticity) field upon the wedge; upstream influence 
or ‘feedback’ of this unsteady interaction a t  the impingement edge; and conversion 
of this upstream influence to vorticity fluctuations in the sensitive region of the shear 
layer near the nozzle exit. These vorticity fluctuations are, in turn, amplified, and 
so on. 

As discussed in detail by Powell (1961), and more recently by Rockwell (1983), these 
jet-edge flows exhibit jumps in oscillation frequency, as well as hysteresis, when the 
impingement lengthscale or velocity U is varied. Figure 1 represents these upward 
and downward jumps in frequency and the associated hysteresis loop for the case 

where flow velocity is first increased, then decreased, as indicated by the arrows. 
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FIGURE 1. Schematics of ( a )  essential features of jet-edge oscillation; (b )  frequency jumps, 
hysteresis and definition of stages I and 11. 

An inherent assumption in nearly all theoretical and experimental investigations 
carried out to date is that  the oscillating jet possesses a single predominant frequency 
of oscillation. A notable exception is the study of Stegen & Karamcheti (1970), who 
showed that two frequency components may be present simultaneously ; the additional 
component arises from the fact that  the stage I component can persist into stage I1 
(figure 1). Although one might detect only a single predominant frequency in the 
region well away from the edge where pressure measurements are typically made (see 
e.g. Powell 1961), a nonlinear oscillating jet should show existence of multiple 
frequencies and their interaction. The corresponding energy exchange between 
frequency components would influence the amplitude of the 'predominant ' component 
of the jet, the distribution of the pressure field on the wedge, and the surrounding 
sound field as well. 

In  essence, the following crucial aspects remain uninvestigated : the spectral 
evolution of the jet from separation to impingement, including the possible 
interaction of primary frequency components yielding a number of additional 
components ; detailed mechanics of vortex interaction a t  the edge, including distortion 
and severing of the incident jet vortices; possible interaction between an unstable 
vortex(ices) within the jet shear layer and a vortex(ices) arising from viscous effects 
a t  the wedge; and the consequence of the upstream influence that modulates the 
sensitive region of the shear layer near separation. In this investigation, we attempt 
to clarify these issues. 

2. Experimental system 
Experiments were carried out in a recirculating water tunnel whose test section 

housed the planar jet-nozzle-wedge system depicted schematically in figure 1. In  
order to ensure a fully developed flow a t  the nozzle exit for the range of Reynolds 
number under consideration (250 ,< Re < goo), the length of the parallel section of 
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the nozzle to its width was 68. To maximize two-dimensionality of the planar jet, 
the breadth-to-width ratio of the nozzle was 48. Further more, to minimize the 
influence of the upper and lower bounding walls of the test section, the ratio of the 
test-section height to nozzle width was 72. All experiments were conducted a t  an 
impingement length L to nozzle-width w ratio L/w = 7.5. 

Considerable effort was expended to eradicate various contaminating effects of the 
flow system, including pulsations from the upstream and downstream plenum tanks 
of the water channel, and a free-surface resonance in the main test section. The result 
was an extremely low-disturbance-level system, verified by spectral analysis of 
hot-film measurements a t  the jet-nozzle exit; the fluctuation level lay below the noise 
threshold of the anemometry system of 2 /U - lop4. Here 2 and v" denote root- 
mean-square values of the longitudinal and cross-stream velocity fluctuations. 

With the exception of preliminary experiments, all velocity measurements were 
made with an LDA system having a 2 W argon-ion laser (backscatter mode) with a 
beam-expander module to maximize signal-to-noise ratio. Silicon carbide particles 
provided effective seeding, allowing use of the analog output of the frequency counter, 
and subsequent processing of the signal on an MINC minicomputer (LSI 11 -03) with 
direct memory access. I n  performing spectral analyses of the fluctuating velocity 
signal, about 75 oscillation cycles were considered; moreover, the final spectral 
amplitudes were obtained by averaging eight of these spectra. 

In  obtaining flow visualization, food colouring was injected into the plenum 
region upstream of the jet nozzle, and the visualized field recorded using an Instar 
television system. Polaroid photos were then taken of the desired scenes, in order to 
show the essential features of an oscillation cycle. 

3. Overview of flow mechanisms and dominant frequency components 
Figure 2 ( a )  provides an overview of the primary mechanisms and frequency 

components addressed here. For stage I oscillations, which occur at low values of 
Reynolds number, the jet oscillates with a single predominant frequency; we 
designate this component $/3. At the edge, counter-rotating vortex pairs are formed 
a t  this same frequency $/3, leading to an upstream disturbance that modulates the 
sensitive region of the shear layer near the nozzle exit a t  frequency $. 

I n  contrast to this clear predominance of the single frequency $/3 in the growth of 
the shear layer and in the fedback signal occurring in stage I, stage I1 (figure 2 b )  
involves two primary frequency components: p and $. The streamwise growth of 
the jet s h m s  vortex formation in the jet shear layer a t  its most unstable frequency 
p; however, this inherent instability of the jet is strongly modulated at the 
lower-frequency component 4/3 of stage I. The source of this low-frequency upstream 
influence is the interaction between successive vortices of characteristic frequency /3 
in the vicinity of the leading edge of the wedge. They nest together at this location, 
the effective frequency is lowered, and predominant fedback disturbance is a t  
frequency $/3; of course there is also an upstream influence at  frequency /3 as well. 
These frequency components represent only the most dominant ones ; their inter- 
action can give rise to  as many as seven well-defined components. 

Figure 2 ( c )  shows the location of the predominant frequency components on the 
amplification factor - ai versus frequency SZ = 2nf(tw/U) diagram ; it represents the 
degree of amplification of v" K ecaiX. The frequency component /3 is close to the most 
amplified disturbance predicted on the basis of linear stability theory, while the 
frequency component $3 undergoes substantial amplification as well. 
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FIGURE 2. Illustration of ( a )  predominant frequencies of do\l.nstrea,m-travrlling instability wave, 
vortex formation/interactiorr at impingement edge, and upstream influence for stage I ; ( b )  for 
stage 11 ; ( c )  amplification factor for predominant frequencies of oscillation based on inviscid 
spatial (---) and transformed temporal (- - -) theories. 

All these aspects will be addressed in the following, starting with visualization of 
the oscillating jet and instantaneous traces of fluctuating velocity within the jet. Then 
these mechanisms will be related to the time-averaged disturbance growth rates of 
the primary frequency components. 

Visualization 

Figures 3 (a ,  b,  c) show vortex interaction patterns for one cornplcte cycle of oscillation 
a t  Re = 250, 600 and 900 respectively. Dye was injected a t  the nozzle entrance in 
order to produce markers emanating from the upper and lower edges of the nozzle 
exit, thereby allowing visualization of the vortex evolution in the upper and lower 
regions of the shear layer. The six photos a t  each Re represent of a complete 
oscillation cycle, corresponding to times t /T = 0, i ,  2, . . . , $, where T is the complete 
period of oscillation. We emphasize that the period T is deterniined by the total time 
for the modulated instability event to occur. For example, in stage I ,  where frcquency 
!# is dominant, the complete period T does not correspond to 1/&3 because of 
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low-frequency modulation of the primary-vortex formation a t  $. I n  the following, 
we discuss visualization details of these modulated instabilities. 

The series of figure 3 ( a ) ,  representing 'stage I '  oscillations, shows that each vortex 
originating from instability of the jet shear layer (i.c. A-type vortex) induces eruption 
of the viscous layer and formation of a vortex of opposite sense (i.e. B-type vortex). 
Frequency +p corresponds to the rate a t  which the A-type vortices are formed at the 
leading edge; in other words the period Tip is the time interval between vortices A 
(at t /T = 0) and A" (at t /T = i). Furthermore, the visualized 'stem' of the jet near 
the nozzle exit oscillates at frequency $3. (These observations agree with the 
predominance of the $3 component in the velocity-time traces of figure 5 . )  However, 
the period of the complete oscillation cycle is twice the period Tip due to a 
subharmonic instability occurring further down the wedge. As shown in the fourth 
photo a t  t/T = $, there is an eventual merging together of the A and A" vortices. The 
tendency towards this nesting of vortices is evident earlier in the cycle: a t  t /T  = i, 
the vortex pair A-B tends to shoot away from the wedge; and at  t /T = the vortex 
pair A"-B" tends to move along the wedge. 

Figure 4 shows an overview of this merging process. Consider the vortex pairs on 
the lower side of the wedge. I n  figure 4 ( a )  the upstream pair is about to rest within 
the downstream one. Figure 4 ( b )  reveals that the upstream counter-rotating pair 
passes beneath the downstream vortex that originally arose from free-shear-layer 
instability. Further scenes show completion of this process; it produces very large-scale 
vortices, as depicted in figure 4 (c) (not part of this same sequence). The two vortices 
originally stemming from the unstable free shear layer have coalesced and allowed 
the vortex erupting from the boundary layer to  pass beneath them. Extensive spectra 
of LDA measurements in the near region of the jet (small values of x / L )  showed no 
evidence of this subharmonic component a t  +/3 having a period Yip. Since this 
subharmonic merging occurs well downstream of the leading edge, its role in the 
upstream influence is apparently overshadowed by the interaction of A-type vortices 
(figure 3 ;  Re = 250) with the leading edge. The important point concerning this 
merging of vortices downstream of the edge, referred to as A-13 and A"-B" in figure 3 
(Re = 250), is that  it moves upstream towards the leading edge with increasing Re, 
where i t  exerts a pronounced influence upon the upstream jet dynamics. 

I n  figure 3 ( b ) ,  representing 'stage 11' oscillations a t  Re = 600, the series of photos 
shows that the vortices of the incident shear layer are more mature in the region 
upstream of the edge. Both A-type and B-type vortices now originate from instability 
of the free shear layer to form counter-rotating vortex pairs A'-B' (t/T = 0, i) and 
A"'-B"' (t/T = $) downstream of the leading edge. These pairs A'-B' and A"'-B"' merge 
with, then sweep beneath, the large-scale vortices A and A" respectively. The 
complete period of the oscillation cycle is $, corresponding to the rate of formation 
of large-scale vortices A ,  A'", . . . . The upstream influence of these large vortices a t  
frequency $/3 dominates the region of the jet near separation. From the photos of figure 
3 ( b ) ,  it  is also evident that each of the incident shear-layer vortices interacts with 
the edge, so we can expect substantial upstream influence at frequency p as well. This 
is confirmed by LDA measurements (discussed subsequently), and also by the time 
traces of figure 5 (Re = 600; x / L  = 0.05, 0.16). 

Figure 3 (c), representing a higher-Reynolds-number (Re G 900) oscillation, shows 
a somewhat different pattern of vortex interaction. Whereas the major share of 
vortex B"' passes above the edge in figure 3 ( b ) ,  the corresponding vortex in figure 3 ( c )  
passes below the edge, and is designated as an A-type vortex, i.c. A"'. I ts  counterpart 
B"' in figure 3 ( b )  eventually merges with other vortices, in contrast, vortex A"' in 
figure 3(c) does not. In  fact, there appears to  be a return to the B-type vortex 
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FIGURE 4. Secondary instability of counter-rotating vortex pairs a t  successive 
instants of increasing time (top to  bottom) ; Re = 300. 
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generation shown in figure 3 ( a )  (note vortices B, B', and B" in figure 3a) .  The sub- 
harmonic component !$ corresponds to large-scale vortex interaction of the type 
shown for vortices A" and A'" (at t/T = $, g). The corresponding time traces of 
figure 5 (Re = 900; x / L  = 0.05, 0.16) show that the upstream influence a t  $/3 again 
overshadows that associated with the vortex formation a t  the instability frequency p. 

I n  summary, the low-frequency component &!I, which is the most unstable 
frequency of stage I oscillation (figure 3; Re = 250), exists in stage I1 (figure 3; 
Re = 600) as well, owing to a remarkable readjustment of the vortex-edge interaction 
patterns with increasing Reynolds number. This $3 component is associated with 
large-scale vortex formation a t  the edge; in stage I they arise from shear-layer 
instability at @, while in stage I1 they stem from selected growth and interaction 
of the incident vortices of the unstable shear layer a t  frequency p, giving rise to the 
vortex patterns described in the foregoing. Over 20 years ago, Powell (1962) showed 
conceptually the importance of considering the upstream influence from the wedge 
region in terms of (single) vortex motion there; the observations here appear to 
corroborate his interpretation. In  essence, vortices of circulation r a t  distance L 
induce upstream perturbations vo x T/2nL. If we assume that the large-scale 
vortices described in the foregoing have large r, it  then follows that the upstream 
influence of the large-scale 9 vortices will dominate the sensitive region of the shear 
layer near separation. 

This upstream influence of these vortex-interaction patterns on the sensitive region 
of the shear layer near the nozzle exit (i.e. small x) and consequent growth of unstable 
disturbances in the shear layer will be addressed in the instantaneous velocity traces 
and spectral analysis that  follow. 

Instantaneous velocity traces 
Figure 5 illustrates the variation of the transverse fluctuation 6 with the time t along 
the jet centreline for Re = 250, 600 and 900, corresponding to the flow visualization 
series of figure 3.  

For Re = 250, a t  a location very near the nozzle exit ( x / L  = 0.05), the period of 
the fluctuation llP corresponds to the frequency of formation of vortex pairs a t  the 
impingement edge (figure 3a)  as well as the visualized period of oscillation of the stem 
of the jet immediately downstream of the nozzle exit. At larger values of x the 
amplitude of the velocity fluctuation grows (not shown in these normalized traces), 
and a t  x / L  = 0.69 a higher-harmonic component having a period TfP sets in and 
persists. Such higher harmonic components are well known to be nonlinear distortions 
of the fundamental component appearing in non-impinging as well as impinging shear 
layers (Ziada & Rockwell 1982). 

At Re = 600 the traces a t  smaller values of x / L  = 0.05, 0.16 show dominance of 
the low-frequency modulation component @ arising from upstream influence of the 
large-scale vortex interaction a t  the wedge (see vortices A, A ,  A'" in figure 3 b ) .  
However, the period corresponding to the frequency /3 of vortex formation in the shear 
layer is detectable a t  these small values of x / L ,  and a t  x / L  = 0.69, 0.96 i t  becomes 
more pronounced. The well-defined modulation pattern in these latter two velocity 
traces may be viewed as the superposition of traces corresponding to periods 71p and 
T with a prescribed phase shift between them, analogous to  the modulation patterns 
occurring for single vortex interactions a t  a cavity corner (Knisely & Rockwell 1982). 

Finally, a t  Re = 900, the patterns of the velocity traces are similar to those of 
Re = 600; again, in this case, there is strong low-frequency modulation a t  $3 of the 
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FIGURE 5.  Variation of transverse velocity fluctuation 5 with time t for locations z / L  = 0.05, 0.16, 
0.69, 0.96 along the jet centreline; Re = 250, 600 and 900. 

separation region of the jet ( x / L  = 0.05, 0.16) due to large-scale vortex interaction 
a t  the downstream wedge (see figure 3 c ) .  At larger values of x / L  = 0.69, 0.96 (where 
the scale of the time axis has been expanded relative to the foregoing), the higher- 
frequency component a t  T becomes dominant. 

On the basis of these velocity traces for stage I1 oscillations, shown in figure 5 
(Re = 600 and Re = goo), one sees the importance of considering strong modulation 
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FIGURE 6. Growth rates of velocity amplitudes 6/U along jet centreline (y = 0) 
for predominant frequency components of jet oscillation. 

at the low frequency $3 of a jet having an unstable frequency /?. I n  94 we address 
the growth rates of these predominant components &3 and /?, and compare them with 
linear stability theory. 

4. Disturbance growth and modulation 
Growth rates of predominant frequency components 

Spectral analysis of the velocity fluctuation v“( t )  typically showed large-amplitude 
peaks a t  two or more frequencies. Figure 6 shows the variation of the amplitude of 
these spectral components as a function of streamwise distance x for Re = 250, 
600 and 900. A t  Re = 250 there is predominance of component $3 for all values 
of x, and at sufficiently large .2: the amplitude of the first harmonic :/? becomes 
significant. At Re = 600 our foregoing considerations revealed that the component 
$3 becomes a low-frequency modulator of the fundamental instability frequency /? ; 
figure 6 shows that the $3 dominates the P-component in the initial growth region 
of the disturbance, while further downstream the /?-component prevails. At Re = 900 
the streamwise growth of these frequency components is relatively similar to  
Re = 600. These amplitude variations of components $3 and P a t  each value of Re in 
figure 6 are similar to the trends indicated by the corresponding time traces in 
figure 5. Below, the growth rates of these predominant components near the nozzle 
exit are compared with linear stability theory. 

e 
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FIGURE 7. Comparison of growth rates of i7/U in linear region of disturbance amplification for 
predominant frequencies of oscillation /3 and +/3 at, Re = 250, 450, 600, 900 and 1300. 

Comparison of disturbance growth rates with linear theory 

At small values of x we expect the disturbance growth rates to be described by linear 
stability theory (Bajaj & Garg 1977). Although both spatial and transformed 
temporal-amplification factors arc shown in figure 2 ,  spatial theory is considered to 
be more representative for these rapidly amplifying disturbances. Consequently, the 
theoretical growth rates of figure 7 are based upon the inviscid spatial theory of Bajaj 
& Garg. At Re = 250 the theoretical growth rate a t  frequency $3 conforms well with 
the experimental data. (At the location closest to the nozzle exit ( x / L  = 0.05) the 
low fluctuation level precluded accurate measurement .) However, a t  higher values 
of Re = 45&1300 the frequency component @ does not grow a t  its own rate predicted 
by linear theory; rather, it  follows closely the growth rate of the P-component. This 
reaffirms our view that the low-frequency component iP simply modulates the 
oscillation of the most unstable frequency /3 instead of growing independently. 

Here we see an analogy with the experimental observations of Knisely & Rockwell 
(1982) for flow past a cavity. I n  their study a similar type of low-frequency 
modulation occurred ; however, the amplitude of the modulating component was 
always substantially less than that of the most unstable frequency of the shear layer. 
The upstream modulation at low frequency was simply due to small perturbations 
in single-vortex-cavity-corner interaction. In  the present investigation, the strong 
upstream influence arises from the interaction between a number of vortices a t  the 
edge, as shown in the foregoing. 
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FIGURE 8. Growth of low-frequency modulating component &’ of normalized velocity 5 along 
centreline (y = 0) for Re = 250, 450, 600 and 900. 

Growth of the low- frequency modulating component 

Figure 8 shows the amplitude variation of 6(x)  at the low- frequency component +/I. 
Remarkable is the persistence in shape of the amplitude distributions over a nearly 
fourfold range of Re .  I n  all cases there is a secondary-growth region immediately 
upstream of the jet edge; the corresponding growth rates are nearly parallel for the 
three highest values of Re.  In  fact, these growth rates are well predicted by linear 
stability theory for the ip-component ! Critically speaking, however, this agreement 
must be regarded as fortuitous, since we expect the disturbance growth to be 
governed by nonlinear phenomena in this region. 

The unusual nature of this secondary-growth region, taken together with the 
relatively constant disturbance amplitude in the ‘ distortion region ’ (figure 8) calls 
for examination of the distributions of G(y) across the shear layer to  determine the 
degree to  which they depart from their initial shapes in the linear-growth region. 
Figure 9 ( a )  shows variation of 6 ( y )  for the two primary components @ and /I. I n  the 
region close to the nozzle exit, represented by x / L  2 0.3, the eigenfunction 
distributions G( y )  have a qualitatively similar shape, with the maximum occurring 
a t  the jet centreline. This trend approximates well that of linear theory (Mattingly 
& Criminale 1971). Although distributions of 6(t)  calculated from linear theory are 
not available in Rajaj & Garg’s (1977) spatial study, the eigenfunction distribution 
of Mattingly & Criminale, albeit for a lower-Reynolds-number jet, does show a 
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FIGURE 9. (a )  Distribution of velocity fluctuation 6(y)/U across the jet for low-frequency 
modulating component ib and most-amplified component p at x / L  = 0.2, 0.3, 0.4, 0.6, 0.8 for 
Re = 650. ( b )  Integrated kinetic energy E6 of distributions of (a) .  
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generally similar variation to the data of figure 9(a) a t  small x / L .  At larger values 
of x / L  it  is evident that the general shape of the C(y) distribution at the most unstable 
frequency P is preserved. On the other hand, there are marked alterations in the shape 
of G(y) for the low-frequency modulating component $3. Consequently, the ' secondary- 
growth' region of figure 8 is associated with a v"(y) markedly different from that in 
the classical linear region near the nozzle exit. These observations are associated with 
the onset of large-scale vortex formation as the edge is approached (see figure 3 b ,  
R e  = 600). 

Figure 9 ( b )  gives the growth rates of the integrated kinetic energy E, = jrmC2(y) dy. 
Comparing these distributions with those of figure 6, i t  is evident that the centreline 
amplitude of v" is a reasonably accurate representation of the growth and energy level 
of the P-component over the entire region from jet separation to impingement. 
However, for the low-frequency modulating component $, the centreline amplitude 
is an accurate indicator only in the initial linear growth region. The severe change 
in shape of the C(y) profile in the 'distortion region' of figure 8 is actually a region 
of continuously increasing kinetic energy E;, 

5. Nonlinear interactions and multiple frequencies 
Up to this point, we focused on the primary frequency components $ and /3 within 

the oscillating jet. However, detailed frequency spectra taken throughout the jet 
revealed a number of lower-amplitude, but nevertheless well-defined, frequency 
components, in some cases, as many as seven discrete components were evident, all 
of them having an amplitude at least 10 yo of the maximum primary component. These 
additional discrete components are central to the energy-transfer process charac- 
teristic of transition from laminar to turbulent flow (Miksad 1973; Miksad et al. 
1982; Knisely & Rockwell 1982). 

Figure 10 represents the relative amplitude of each of these frequency components 
along the jet centreline by the diameter of the data symbol; these diameters were 
determined from spectra of the type shown a t  the bottom of figure 10. At a given 
value of x / L  the component with the largest amplitude has the largest-diameter 
symbol. Smaller-diameter symbols of the remaining components a t  that  value of x / L  
represent proportionally smaller amplitudes of the respective frequency components. 
Only those frequency components having an amplitude at least 10% that of the 
maximum-amplitude (primary) component are included in these plots. 

The left-hand ordinate of each plot gives the absolute value of Strouhal number 
fw/ U of each frequency component, and the right-hand ordinate shows the particular 
frequency component in terms of the primary frequency P. All components, for all 
values of Re, can be represented as sums of /3 and 9, Possible relations are 

The first harmonic of P, i.e. Z P ,  may be viewed as evolving from nonlinear distortion 
of the fundamental p. Biocoherence analysis shows that it may also be interpreted 
as an interaction with itself; i.e. 2P = P+P (Knisely & Rockwell 1982). Of course, 
certain components of (1) can also be represented as difference combinations of ,8 and 

12 F L Y  147 
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FIGIJRE 10. Multiple-frequency components arising from nonlinearity of component $,!I (Re = 250) 
and nonlinear interaction of primary components /3 and $/I (Re = 600 and 900). 

$, e.g. +/3 = 2/3-@. Irrespective of the type of interpretation, all sum and difference 
possibilitiesshow that nonlinear wave interaction betweenp, $3and their combinations 
is an admissible source of the components given in figure 10 and (1). I n  the following, 
we discuss further details of these components, commencing with the lowest 
Reynolds number. 

At the lowest Reynolds number Re = 250, the primary component $,8 and its first, 
second and third harmonics &3, p and +p are present with successively decreasing 
amplitudes. In  other words, these higher-order components are due to distortion of 
the fundamental +b at sufficiently high amplitudes of oscillation wherein the ij3, t/l, 
$3 and +p components have successively smaller amplitudes. This type of higher 
harmonic production is well predicted by Stuart’s (1967) inviscid nonlinear theory 
(also see Ziada & Rockwell 1982). Only if the $3-eomponent were to have an amplitude 
of the same order as the primary @-component could we consider i t  to be a primary 
component as well; in this case, the $,O-component could be viewed as the difference 
frequency of ,8 and $3. 



Xelf-excited j e t  349 

In  fact, at higher Re (Re  = 600, 900) the aforementioned upstream modulation of 
the shear layer does indeed give two primary components: $/3, the modulating 
frequency arising from downstream vortex interactions ; and /3, the most unstable 
frequency of the jet. At Re = 600 there are five components in addition to the primary 
components $/3 and p, both of which have relatively high amplitudes a t  very small 
x /L .  If these additional frequency components are the products of nonlinear 
interaction of and /3, then they should be related to the sum and difference 
frequencies of $3 and /3. Equation ( 1 )  shows that this is indeed the case. At this point 
we should emphasize that if there is nonlinear interaction between two spectral com- 
ponents, say fi and fi, then both fi and fi must appear as spectral peaks. In  figure 10 
this is not the case a t  all values of x / L  at, for example, the interaction /3+v = $I; 
the :/3 component appears over a limited range of x / L  because its amplitude is 
sufficiently large only in that region, in accord with the foregoing amplitude criterion. 
Rigorously speaking, one should account for the streamwise evolution of the 
nonlinearly interacting components by considering the integrated kinetic energy 
across the flow at each streamwise station; this is important because the shape of 
the eigenfunction varies, in general, with the frequency under consideration. I n  this 
spirit, we determined values of E,- for all spectral components at x / L  = 0.84, just 
upstream of the irnpingement edge. At this location, the characteristic fluctuation 
amplitudes E* = E?., normalized with respect to the maximum at frequency /3 are 

The basic features of the nonlinear interactions described in conjunction with 
figure 10 are similar to those observed for shear layers externally excited (via a 
loudspeaker) a t  two independent frequencies (Miksad 1973). The important point here 
is that the two ‘excitation frequencies ’ $3 and /3 are themselves self-generated in (i.e. 
inherent to) the flow system, and are present with substantial amplitude, even near 
shear-layer separation, owing to upstream influence from the flow-edge interaction 
region. I n  cases without an edge, one must still admit significant upstream influence 
from the downstream vortex dynamics (Rockwell 1983) ; this aspect deserves further 
investigation. Further details of these interpretations of nonlinear interaction can be 
found in the related impinging and non-impinging shear-layer studies of Knisely & 
Rockwell (1982), Miksad (1983) and Miksad et al. (1982), addressing cavity and wake 
flows respectively. 

6. Frequency jumps and multiple frequencies 
The concept of frequency jumps and hysteresis effects in jet-edge systems was first 

addressed rigorously by Powell (1  97 1 ), and has subsequently received considerable 
attention, as summarized by Rockwell (1983). Although efforts have been largely 
focused on the variation of a single predominant frequency component in charac- 
terizing these jumps and hysteresis effects, we Fropose here an additional criterion : 
a sudden increase in the number of multiple frequencies corresponds to a jump to a 
higher stage of oscillation and vice versa. Figure 11 shows the frequencies of those 
spectral peaks having an amplitude a t  least 10% of the maximum amplitude 
component. In accordance with the concepts discussed in conjunction with figure 10, 

12-2 
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FIGURE 11. Multiple-frequency content of oscillating jet (u-component) at x / L  = 0.75 on centreline 
(y = 0) illustrating relation between frequency jumps and multiple frequency content as flow passes 
from (a )  stage I to stage I1 with increasing Re; ( b )  stage I1 t o  stage I with decreasing Re. 

there is not a single predominant frequency a t  this location in the jet. Figure 11 ( a )  
reveals that for increasing Re there is a sudden increase in the number of frequency 
components in the range 450 < Re < 550, while figure 11 ( b )  reveals that for de- 
creasing Re there is a sudden decrease in the number of frequency components in the 
range 300 ? Re 7 375. In fact, these two ranges of Reynolds number are very close 
to the values for which Powell observed upward and downward jumps respectively in 
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predominant frequency of oscillation on the basis of far-field microphone measure- 
ments; they are indicated by the vertical arrows in figure 11.  The cross-hatched 
regions define the range of Powell’s data for three different jet breadth-to-width 
ratios. It is evident from overlap of the boundaries of these regimes that the location 
of the jump depends on this ratio. 

7. Conclusions 
The self-excited jet, whose oscillation amplitude is strongly enhanced by its 

impingement upon a downstream edge, can give rise to a number of well-defined 
frequency components. Although certain of them may have amplitudes of only 10 yo 
of the dominant components of the oscillation, their role is still important ; they are 
associated with the energy transfer between the dominant frequency components as 
the flow evolves in the streamwise direction. In fact, the absolute amplitudes of the 
dominant components will be related to the degree of energy transfer between 
themselves as well as to other components within the jet. 

At relatively low values of Reynolds number there is a single predominant 
frequency of oscillation that coexists with its higher harmonics. These harmonics are 
simply due to strong nonlinearity of the jet oscillation. Associated with this single 
predominant component are single, well-defined vortices impinging upon the edge 
region. Each of these vortices, in turn, produces a large-scale vortex of opposite sense 
due to the unsteady pressure gradient imposed upon the viscous layer of the edge 
by impingement of the incident vortex ; the result is a ‘ counter-rotating vortex pair ’. 
Further downstream of the edge, these vortex pairs can, in turn, undergo interaction. 
The importance of these downstream interactions, or ‘secondary instabilities ’, 
comes forth at higher values of Reynolds number; they move closer to the impinge- 
ment edge where they have a drastic effect on the upstream dynamics of the flow. 

At higher values of Reynolds number, vortices in the incident jet shear layer 
develop more quickly, and the corresponding vortex pattern at the edge is considerably 
more complex. It involves interactions between vortices of the unstable jet shear layer 
and induced vortices of opposite sense a t  the edge to produce large-scale low-frequency 
vortices that have a strong upstream influence. I n  fact, the sensitive region of the 
shear layer near the upstream separation edge, where linear amplification of the 
unstable disturbance occurs, shows two well-defined frequency components : one 
corresponding to the low-frequency effect of the large vortices at the edge, and t h e  
other to  the inherent instability of the jet shear layer. As the flow evolves 
downstream, the interaction between these two strong components gives rise to a 
number of additional frequency components. 

Particularly remarkable is the fact that the vortex-interaction pattern at the edge 
undergoes a self-adjustment in order to maintain a low-frequency modulating 
component over a wide range of Reynolds number. This concept deserves careful 
consideration for other types of flows having finite lengthscales ; the linear-growth 
region immediately downstream of the separation edge may experience strong 
amplitude modulation from downstream vortex interactions in these cases as well. 

The authors are grateful to the Office of Naval Research for primary support of 
this research program. They also wish to  express their appreciation to  the National 
Science Foundation and the Volkswagen Foundation for initial support, and for 
providing some of the instrumentation used in the experimental work. Dr Charles 
Knisely provided a penetrating critique of the manuscript. 



352 M .  Lueus and D. Rockwell 

R E F E R E N C E S  

BAJAJ, A. K. & GALLG, V .  K.  1977 Linear stability of jet flows. Trans. A S M E  E:  J .  Appl.  Mech. 

KNISELY, C. & ROCKWELL, D. 198'2 Self-sustained low-frequency components in an impinging 
shear layer. J .  Fluid Mech. 116, 157-186. 

MATTJNGLY, G. E. & CRIMINALP, W. 0. 1971 Disturbance characteristics in a planar jet. Phys. 

MTKSAD, R. W. 1973 Experiments on nonlinear interactions in the transition of a free shear layer. 
J .  Fluid Mech. 59, 1-21. 

MIKSAD, It. W . ,  l J ~ ~ ~ ~ ,  F. L., POWERS, E. J . ,  KIM, Y.  C. & KHADRA, L. 1982 Experiments on the 
role of amplitude and phase modulation during transition to  turbulence. J .  Fluid Mech. 123, 

44, 378-384. 

Fluids 14, 2258-2264. 

1-29. 
POWELL, A. 1961 On the edgetone. J. Acoust. Soc. A m .  33, 395409. 
POWELL, A. 1962 Vortex action in edgetones. J. Acoust. r S m .  Am.  34, 163-166. 
ROCKWELL, D. 1983 Oscillations of impinging shear layers. Invited Lecture at 20th Aerospace Sci. 

Meeting A I A A ,  January 1980, Orlando, Florida; A I A A  Paper 81-0047; A I A A  J .  21,645664. 
STEGRN, G. I t .  & KARAMCHETI, K .  1970 Multiple tone operation of the edgetone, J .  Sound Vib.  

STUART, J .  T. 1967 On finite amplitude oscillations in laminar mixing layers. J .  Fluid Mech. 29, 

ZIADA, S. & ROCKWELL, 1). 1982 Generation of higher harmonics in a self-oscillating mixing 

12, 281-284. 

4 1 7-440. 

layer-wedge system. A I A A  J .  20, 196-20'2. 


